The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Tönu Pullerits; Photo: Kennet Ruona

Tönu Pullerits

Professor

Portrait of Tönu Pullerits; Photo: Kennet Ruona

Electron relaxation in the CdSe quantum dot - ZnO composite: prospects for photovoltaic applications.

Author

  • Karel Zidek
  • Mohamed Qenawy
  • Kaibo Zheng
  • Tönu Pullerits

Summary, in English

Quantum dot (QD)-metal oxide composite forms a "heart" of the QD-sensitized solar cells. It maintains light absorption and electron-hole separation in the system and has been therefore extensively studied. The interest is largely driven by a vision of harvesting the hot carrier energy before it is lost via relaxation. Despite of importance of the process, very little is known about the carrier relaxation in the QD-metal oxide composites. In order to fill this gap of knowledge we carry out a systematic study of initial electron dynamics in different CdSe QD systems. Our data reveal that QD attachment to ZnO induces a speeding-up of transient absorption onset. Detailed analysis of the onset proves that the changes are caused by an additional relaxation channel dependent on the identity of the QD-ZnO linker molecule. The faster relaxation represents an important factor for hot carrier energy harvesting, whose efficiency can be influenced by almost 50%.

Department/s

  • Chemical Physics
  • NanoLund: Center for Nanoscience

Publishing year

2014

Language

English

Publication/Series

Scientific Reports

Volume

4

Document type

Journal article

Publisher

Nature Publishing Group

Topic

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 2045-2322