PhD project: Characterization of magnetic materials
Generation and characterization of functional nanostructured magnetic materials
The goal of the project is to produce and characterize functional magnetic materials with tailored nanoscale composition and morphology through controlled self-assembly of nanoparticles generated using a physical technique. The generated materials will be characterized using electron microscopy, magnetometry, and synchrotron-based spectroscopy and microscopy techniques at the MaxIV laboratory and other large-scale facilities in Europe.
Introduction
Division of Synchrotron Radiation Research is a part of Physics and has more than 40 employees. The main focus of the research is experimental studies of electronic, structural and chemical properties of materials. At the division we use and develop a wide range of synchrotron and lab based techniques, such as X-ray photoelectron spectroscopy/imaging and X-ray diffraction/imaging. We also host one of Sweden's largest facilities for scanning probe microscopy.
Division of Synchrotron Radiation Research website
Project specification
Work duties
The goal of the project is to produce and characterize nanostructured magnetic materials with potential applications such as energy storage, magnetic cooling, and high-performing permanent magnets. The project will use a novel technique where magnetic nanoparticles generated using an aerosol technique based on spark ablation are self-assembled to form macroscopic systems with tailored nanoscale composition and morphology. The focus will be on generating materials of different nanoscale composition and structure by controlling the self-assembly through external magnetic fields or magnetic templates created using processing techniques. The characterization will be performed using electron microscopy, a magnetometer equipped with a superconducting quantum interference device, and synchrotron-based spectroscopy, microscopy, and imaging techniques at the MaxIV laboratory and other large-scale facilities around the world. Hence, the doctoral student will gain comprehensive experience in several important key production and characterization tools for nanomaterials. The project is primarily experimental and will require extensive work in different laboratories, but will also involve theoretical work such as setting up models for interpreting the data. The doctoral student is expected to work independently, as well as in close collaboration with researchers carrying out other tasks within the project.
The main duties of doctoral students are to devote themselves to their research studies which includes participating in research projects and third cycle courses. The work duties can also include teaching and other departmental duties (no more than 20%).
The doctoral student is expected to work independently, as well as in close collaboration with researchers carrying out other tasks within the project.
Desirable skills
- Experience with magnetic materials and related experimental methods are of special value.
- Valuable, but not necessary, is experience with synchrotron radiation based techniques
Enrolment: Physics, Science Faculty
Supervisor
Rasmus Westerström, Associate senior lecturer at Synchrotron Radiation Research
Contact: rasmus [dot] westerstrom [at] sljus [dot] lu [dot] se
Division of Synchrotron Radiation Research webpage
Positions in the 1st call
The call was open from 23 March until 4 May 2020. Of the ten PhD students that were successfully recruited in this call, eight are eligible for GenerationNano funding.
- Smart nanomaterials for green-tech applications
- Characterization of nanostructured magnetic materials
- PhD project on information as fuel
- Photon detection & sustainable energy
- Ultrafast spectroscopy for new solar energy solutions
- Biomarker detection by optical sensing with nanowires
- Morphology and virulence among bacteria
- Multiscale biomechanics from molecules to cells in cancer
- Solubility of amyloid beta peptide (up to two positions)
- Nanoparticles in the brain: multitalented drug carriers to target neurodegenerative disease