The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Transport physics

Quantum transport in semiconductors

We focus on experimental and theoretical studies of transport and quantum many-body physics, as well as on application aspects of nanostructures and quantum devices made from semiconductor heterostructures and nanowires, and emerging new materials.

Quantum dots in nanowires

We explore the physics of strongly confined quantum dots in semiconductor nanowires, formed by heterostructures and/or local gate potentials. Quantum dots behave as artificial atoms but with properties that can be changed during the experiments using electric and magnetic fields. Our primary focus is on understanding and controlling spin and orbital states in quantum dots and coupled quantum dots, which are key building blocks in many concepts for quantum information processing. We focus on nanowires because they already provide much of the required confinement and offer built-in contacts for transport measurements. Additionally, many interesting materials and heterostructures can only be synthesized in nanowires.

SEM photography of two quantum dots in a nanowire

SEM image of an InAs nanowire with GaSb shell grown preferentially on zinc blende InAs (left). SEM image of quantum device showing position of gate electrodes and source-drain contacts to individually control each dot (right). Adapted from D. Barker et al, Appl. Phys. Lett. 114, 183502 (2019); https://doi.org/10.1063/1.5089275

Simulation schemes for quantum transport

We develop numerical tools for a quantitative simulation for electrical transport in nano-devices. Here we use a variety of different approaches ranging from the Pauli master equation, over different types of quantum master equations to Green's function approaches. In this context we established the open source code QMEQ which allows to compare different schemes. Our simulations are targeted to specific experimental designs and allow both to understand the underlying physics and to optimize electro-optical devices.

Key publications:

Contact persons: