The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Nanofabrication and industrial production

Production of, and with, nanostructures.

We explore novel nanofabrication methods such as directed self-assembly and template-assisted crystal growth. Metal products and production methods have multiple synergies with nanostructured materials e.g., through integration of nanosensors. Processes such as oxidation, melting and deformation are studied at the nano and atomic scales.

Research areas:

Nanofabrication

Integrated Sensors and Adaptive Manufacturing

To improve sustainability, minimize resource consumption, and increase competitiveness in manufacturing, real-time digital optimization of mechanisms, equipment, and systems becomes essential. Integrated and non-invasive nanosensors for measuring parameters like temperature, flow, or pressure, offer invaluable real-time feedback. The design and incorporation of such sensors into e.g. cutting tools build on the extensive experience of nano-processing within NanoLund. By merging sensor-driven monitoring with informed strategies to refine products and processes, we're paving the way for an era of closed-loop manufacturing and operations.

Different building blocks of sensor

Contact persons:

Nano-characterization of industrial materials and processes

The characterization and synthesis tools we often associate with semiconductor nanostructures also enable new insights into industrial materials and processes. Examples include the use of transmission electron microscopy (TEM) to find the atomic-scale origin of wear and weak points in cutting tools and joints, and environmental TEM to visualize their formation in real time. X-ray-based techniques provide similar insights into the evolving surface structure and chemistry of both tooling and workpiece materials, obtained even under processing or operando conditions. Finally, we investigate the use of chemical vapour deposition to enable efficient metal joining for corrosion-resistant alloys with complex geometries.

Contact persons: