The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.


High performance electronics are designed and implemented on the nanoscale. Smaller device geometries leads to higher operation frequencies, larger small signal gain and better packing density. We explore transistors close to the atomistic limit to implement high performance electronics devices for radio frequency (RF) and computation.

Project areas:

RF Nanowire Field Effect Transistors

Transistors optimized for high frequencies rely on highly scaled device geometries and gate lengths. We explore and build nanoscale field effect transistors with narrow bandgap materials to realize and explore the high frequency device performance with frequencies towards THz. Device design and layout are explored in the atomistic limits to push transition frequencies and power gains.


Field Effect Transistor
A single nanowire field effect transistor with world record drive currents. Device and SEM image by Cezar Zota. Reference: IEDM 2016.

A single nanowire field effect transistor with world record drive currents. Device and SEM image by Cezar Zota. Reference: IEDM 2016.

Novels Methods of Computation

Traditional methods of digital computation are based on Boolean-logic and CMOS implementation in a von Neumann architecture. We explore novel methods of computation utilizing beyond CMOS devices and methods of computation. Of general interests are implementation of quantum bits, neuromorphic computation and non-traditional switches. 

Key publications

High frequency III–V nanowire MOSFETs. Lind, Erik. Semiconductor Science and Technology, 31.9 (2016): 093005. DOI: 10.1088/0268-1242/31/9/093005
See article high frequency nanowire MOSFETs at publisher's site

Record performance for junctionless transistors in InGaAs MOSFETs Zota, Cezar B., et al.  2017 Symposium on VLSI Technology, IEEE, 2017. DOI: 10.23919/VLSIT.2017.7998190
See article record performance at publisher's site

InGaAs tri-gate MOSFETs with record on-current Zota, Cezar B., et al. 2016 IEEE International Electron Devices Meeting (IEDM). IEEE, 2016. DOI: 10.1109/IEDM.2016.7838336
See article InGaAs tri-gate MOSFETs at publisher's site

Key faculty

Recent theses

Fredrik Lindelöw, III-V Nanowires for High-Speed Electronics, PhD thesis, Lund University, 2020
See Fredrik Lindelöw's thesis at the Research Portal

Cezar Zota, III-V MOSFETs for high-frequency and digital applications PhD thesis, Lund University, 2017.
See Cesar Zota's thesis at the Research Portal